Intelligent Strain Sensing on a Smart Composite Wing using Extrinsic Fabry-Perot Interferometric Sensors and Neural Networks.

By

Rohit Dua, Vicki M. Eller, Kakkattukuzhy M. Isaac, Steve E. Watkins, and Donald C. Wunsch

Copyright Notice:
© Copyright 2004 Electrical and Computer Engineering Department, University of Missouri-Rolla. All rights reserved.
Permission is freely given to receive and store this material for personal educational use by educational institutions only. Not to be reproduced, linked, distributed, or sold in any form or media without express written permission of the authors

© Copyright 2004 ECE, UM-Rolla. All rights reserved
Overview

• Motivation & Problem Description
• Fiber Optic Sensors
• Experimentation
• Neural Network Implementation
• Results
• Conclusion and Future Work
Motivation and Problem Description

- Aerodynamic parameter prediction
 - Strain: different points on wing
- Varying conditions
 - Angle-of-attack & air speed
- Neural network modeling
- Stall Prediction
Intelligent Sensing System

- Fiber Optic Sensing System:
 - Absolute strain measurement
 - Many advantages
- Neural Networks:
 - Function approximators
 - Intelligent system
Fiber Optic Sensors

Extrinsic Fabry-Perot Interferometric (EFPI) Sensor
Experimentation

Sensor placement

Top View

© Copyright 2004 ECE, UM-Rolla. All rights reserved
Experimentation (Contd.)

- Key Strain points Measured
- Variation in Pressure: 0 to 460 Pa
- Variation in angle-of-attack: -1.627^0 to 4.31^0
Neural Network Modeling

Neural network trained on two types of data
- Max and Min strain
- Average Strain

Typical Strain profile
Training on Max Strain - Results

Simulated Vs Actual Max Strain

Test Samples

Normalized Strain

Simulated
Actual
Training on Min Strain-Results

Simulated Vs Actual Min Strain

Test Samples

Normalized Strain

Simulated
Actual

© Copyright 2004 ECE, UM-Rolla. All rights reserved
Training on Average Strain

Simulated Vs Actual Average Strain

Normalized Strain

Test Samples

Simulated
Actual
Results: Contd.

Average errors in the test set

<table>
<thead>
<tr>
<th>Sensor</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Strain</td>
<td>4.05%</td>
<td>0.71%</td>
<td>2.08%</td>
</tr>
<tr>
<td>Min Strain</td>
<td>8.35%</td>
<td>1.92%</td>
<td>0.94%</td>
</tr>
<tr>
<td>Average Strain</td>
<td>3.70%</td>
<td>2.03%</td>
<td>1.05%</td>
</tr>
</tbody>
</table>
Conclusion and Future Work

• Predicted Strain compared with actual strain: tool to predict stall
• Neural network modeling: easy to implement and good accuracy
• Future work:
 ➢ Improve accuracy in measurement techniques
 ➢ Optimal sensor location algorithms
 ➢ Simulation of stall condition

© Copyright 2004 ECE, UM-Rolla. All rights reserved