Intelligent Strain Sensing on a Smart Composite Wing using Extrinsic Fabry-Perot Interferometric Sensors and Neural Networks.

By

Rohit Dua, Vicki M. Eller, Kakkattukuzhy M. Isaac,

Steve E. Watkins, and Donald C. Wunsch

Copyright Notice:

© Copyright 2004 Electrical and Computer Engineering Department, University of Missouri-Rolla. All rights reserved.

Permission is freely given to receive and store this material for personal educational use by educational institutions only. Not to be reproduced, linked, distributed, or sold in any form or media without express written permission of the authors

Overview

- Motivation & Problem Description
- Fiber Optic Sensors
- Experimentation
- Neural Network Implementation
- Results
- Conclusion and Future Work

Motivation and Problem Description

- Aerodynamic parameter prediction
 Strain: different points on wing
- Varying conditions
 - > Angle-of-attack & air speed
- Neural network modeling
- Stall Prediction

Intelligent Sensing System

- Fiber Optic Sensing System:
 > Absolute strain measurement
 - Many advantages
- Neural Networks:
 - Function approximators
 - Intelligent system

Fiber Optic Sensors

Extrinsic Fabry-Perot Interferometric (EFPI) Sensor

Experimentation

Top View

Sensor placement

 $\ensuremath{\textcircled{C}}$ Copyright 2004 ECE, UM-Rolla. All rights reserved

Experimentation (Contd.)

Measurement of angle-of-attack

- Key Strain points Measured
- Variation in Pressure: 0 to 460 Pa
- Variation in angle-of-attack: -1.627° to 4.31°

Neural Network Modeling

Neural network trained on two types of data

- Max and Min strain
- Average Strain

Training on Max Strain- Results

Training on Min Strain-Results

Training on Average Strain

Results: Contd.

Average errors in the test set

	Sensor		
	S1	S2	S3
Max Strain	4.05%	0.71%	2.08%
Min Strain	8.35%	1.92%	0.94%
Average Strain	3.70%	2.03%	1.05%

Conclusion and Future Work

- Predicted Strain compared with actual strain: tool to predict stall
- Neural network modeling: easy to implement and good accuracy
- Future work:
 - > Improve accuracy in measurement techniques
 - Optimal sensor location algorithms
 - Simulation of stall condition

