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Health Monitoring of Composite Structures

• Advanced Fiber-reinforced Composite materials - used extensively in Aerospace, Civil and other 
applications.

• Although designed and inspected carefully for fatigue loading, these structures have internal damage 
or cracks that escape inspection.

• Ever-increasing need to build intelligence in them - They can  serve and react accordingly to the 
environment.

• Field of Smart Structures has emerged and made possible through the merger of Materials Science, 
Sensor Technology, Structure Mechanics and Advanced Signal Processing Techniques.

• Neural Networks have emerged as a major contender in implementing intelligence in Composite 
Structures owing to their Parallel processing, Learning and Adaptive capabilities.

• On-line Health Monitoring and Control of composite structures can be implemented by 
incorporating neural networks for 

* Damage Assessment 

* Fatigue Monitoring

*Delamination Detection



© Copyright 2004 ECE, UM-Rolla. All rights 
reserved

Damage Detection & Classification

• Important part of Health Monitoring of a Composite Structure.

• Study - concentrated on “Low Velocity Impact Behavior”

• Low velocity impact events can induce localized delamination - significantly reduce the 
compression strength of composite structures.

• Many times - damage from impact due to low velocity events cannot be detected by visual 
inspection techniques. 

• The experimental determination of impact-induced  strain profiles can help predict the 
extent of damage in composite plates.

• Visual inspection techniques (Surface inspection) may not indicate the severity and extent 
of the internal damage such as cracking and delamination

• Artificial neural networks can be incorporated for real time monitoring of  composites for 
damage detection and classification.
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Experimental Setup

Sensor 
Instrumentation

Computer with Data 
Acquisition Software

Weights

Sensors

• Several experiments were performed with varying 
weights falling from different heights (different final 
velocities).

• Three PVDF (Polyvinylidene Fluoride) 
piezoelectric film sensors were placed as shown in 
the ‘X’, ‘Y’ & ‘XY’ directions to measure the 
respective directional strains  

• The same experiment was simulated using FEA for 
5 different locations on the composite plate.

Composite
plate

Sensor in the ‘Y’ Direction
Sensor in the ‘X’ Direction
Sensor in the ‘XY’ Direction
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Data Acquisition

Strain Graphs
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• The strain in time is sampled every 4 µs and stored in files for every experiment  
performed.
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Relationship of Strain to Damage

Contact Force for mass 3.6 kg
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• Experiment - performed with a particular mass dropped from a particular height (having a 
different terminal velocity); Therefore - different Kinetic Energy (1/2*m*v2).

• Peak contact force ∝ Kinetic energy of the falling mass ∝ Amount of damage (visual 
inspection)

• Each contact force profile - strain profile - can be used to predict the damage.
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Pre-processing of Strain Samples for the Training 
Set

• Strain X and Y were chosen for the inputs to the neural network. They had to be pre-processed before 
they could be used for training the neural network.

Strain X = [1005] elements

Strain Y = [1005] elements 
Strain X+Y = [2010] elements

Strain X+Y = [2010] elements

All elements scaled between 
0 and 1

Strain X+Y = [503] elements

Vectors are down sampled to 
remove redundancy

Total of 141 Input 
Vectors, each of 503 
elements.  

15 vectors for simulation 
purposes

126 vectors for training 
purpose 
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Damage Classification and Setting up of Target 
Vectors

C L A S S IF IC A T IO N K IN E T IC  E N E R G Y
R A N G E  (J )
(0 .5* m * v* v)

C O D E

N O  D A M A G E < = 0 .1 [0  0  0 ]
M IN U T E  S C R A T C H E S 0 .1<  K .E . < = 0 .3 [0  0  1 ]

M IN O R  P A R A L L E L
S U R F A C E  C R A C K S

0 .3  <  K .E  < = 4 [0  1  1 ]

S U R F A C E
D IS C O L O R A T IO N  &

S M A L L  M A T R IX
C R A C K S

4  <  K .E . < =  8 [0  1  0 ]

D IS C O L O R A T IO N  &
L O N G  M A T R IX  C R A C K S

8<  K .E . < = 10 [1  1  0 ]

M O D E R A T E
D IS C O L O R A T IO N ,
D E L A M IN A T IO N  &

L O N G  M A T R IX  C R A C K S

10  <  K .E . < = 12 .5 [1  1  1 ]

S E V E R E
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S E V E R E
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K .E  >  12 .5 [1  0  1 ]

A total of Seven (7) Classifications were decided upon by visually inspecting the composite 
plates and the Kinetic Energy of the falling mass. The classification is coded using “GRAY 
CODE”
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Architecture of the Neural Network

Hidden 
Layer

Output 
Layer

a1

a2

a3

• Multi-layered Feed-forward Network is used

• 10 neurons in the Hidden Layer

• As we have 7 Classifications implemented in Gray 
Code, we have 3 neurons in the output layer

• Transfer Functions of both hidden and output 
layer is “LOGSIG”
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Training Algorithm

• Backprpogation using several training  algorithms were used to train the network. 

• Levenberg Marquardt couldn’t be used because of the huge memory requirements 
for 503 elements of the input vector. 

• “Conjugate Gradient Method” & “One Step Secant Method”, used to train the 
network give good results, with the former converging earlier. 

• Conjugate Gradient Method is suited for large size input vectors. One step secant 
method requires more storage space than conjugate gradient method, therefore 
takes a longer time to converge.

•The network was trained for 4000 epochs to obtain the required mean squared 
error.
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Performance and Mean Square Error Curves
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Results
b =

Columns 1 through 12 

0     0     0     0     0     0     0     0     0     1    0     0
1     1     1     1     1     1     1     1     1     0    1     1
1     1     1     1     0     1     0     0     0     1    0     1

Columns 13 through 15 

0     0     0
1     1     1
1     1     1

tna =

Columns 1 through 12 

0     0     0     0     0     0     0     0     0     1    0     0
1     1     1     1     1     1     1     1     1     0    1     1
1     1     1     1     0     1     0     0     1     1    0     1

Columns 13 through 15 

0     0     0
1     1     1
1     1     1
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Results
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Comparison with other Training Algorithms
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Conclusions & Future Improvements

• A Multi-layered feed-forward neural network was successfully 
trained to classify damage on Composite plates due to low velocity 
impact events.

• Accuracy can be increased to 100% by performing more 
experiments to generate a larger data set for training and simulation

• This project has demonstrated the ability of a neural network to be 
incorporated into “Smart Structures” for their Health Monitoring
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Questions


