
Neural Networks Laboratory
EE 329 A

Introduction:
 Artificial Neural Networks (ANN) are widely used to approximate complex
systems that are difficult to model using conventional modeling techniques such as
mathematical modeling. The most common applications are function approximation
(feature extraction), and pattern recognition and classification. There is no exact available
formula to decide what architecture of ANN and which training algorithm will solve a
given problem. The best solution is obtained by trial and error. One can get an idea by
looking at a problem and decide to start with simple networks; going on to complex ones
till the solution is within the acceptable limits of error. This laboratory has been designed
to give one an opportunity to try different network architectures and training algorithms,
to solve a simple classification problem, and comment on their performance.

There are different neural network architectures. The basic architectures include multi-
layered feed-forward networks (Figure 1) that are trained using back-propagation training
algorithms.

Figure 1: Multi-layered feed-forward neural network. A variation in the architecture of such a network can
be due to a variation of the number of layers, the number of neurons in each layer, the transfer function of
neurons in each layer.

Problem Description:
The iris flower (Figure 2) data set is widely used, as an example, to show the application
of neural networks as a data classifier. Three types of similar flowers from the IRIS
family have been chosen. They are:

1. I. Setosa
2. I. Verginica
3. I. Versicolor

Inputs First Hidden
layer

Second
Hidden Layer

Output
LayerInputs First Hidden

layer
Second
Hidden Layer

Output
Layer

Figure 2: Iris Verginica (Left). Parts of a flower. Note the Sepal and the petal. (Source:
http://www.bbg.org/gar2/topics/botany/parts_flower_parts.html)

Four distinguishing features were chosen in order to classify a particular flower to its
category. The four features (Figure 2) are:

1. Petal width
2. Petal length
3. Sepal width
4. Sepal length

The goal is to use an ANN to classify a specimen into its category using the above
mentioned four features. You will be using Multilayered Perceptrons (MLP) feedforward
networks using different backpropagation training algorithms.

Data Setup (Pre-processing):

The features obtained from many specimens are actually considered as raw data. Some
amount of pre-processing is always carried out on the input and output data in order to
make it suitable for the network. These procedures help obtain faster and efficient
training. There are four features that are used as inputs to the neural networks. Each
feature has a range of values. If the neurons have nonlinear transfer functions (whose
output range is from -1 to 1 or 0 to 1), the data is typically normalized for efficiency.
Each feature is normalized using one of the two subroutines available in MATLAB.

Since there are three classes of flowers, a three-state numerical code must be assigned.
The network must be trained to reproduce the code at the outputs. The output can be left
in decimal form where the decimal numbers 1, 2, and 3 represent the classes or the
classes can be coded in binary form. For this problem the outputs are coded in binary
form as

1. I. Setosa : Code 00
2. I. Verginica : Code 01
3. I. Versicolor : Code 10

Architecture Details (factors to be taken into account):

As such, one can employ as many layers of neurons to develop the architecture. But, 3-4
layers are generally sufficient to approximate most of the functions. While building the
architecture, you can adjust the number of layers and the number of neurons in each
layer. Since the output of the network is in 2 bit binary form, the output layer will have to
have two neurons. If you had decided to code the output in decimal form (1, 2, and 3), the
output layer would only need one neuron.

Software:

One can develop ANN architectures and write training algorithms in any known higher
level language. MATLAB has a proven tool box that helps one apply, already developed
training algorithms, to solve the problem. MATLAB also has a GUI based system. This
windows-based platform provides a step-by-step visual procedure to build, train and
simulate the ANN.

Startup:

• Start MATLAB. You have been provided with a file ‘data.mat’. This file has data
already formatted and ready for usage. Load the file by typing the command load
(‘data.mat’); in the command window. This command uploads the file and
includes all the variables setup in the current workspace.

• Typing in the command whos, you will see all the variables in the data file. Of
these, the most important ones are:

o train_inputs (4×120): 4 rows by 120 columns. The number 4 represents
the normalized features which will be presented, one-by-one, in parallel
fashion. Each pattern of 4 features is called a vector and there are 120 such
vectors for training

o train_outputs (2×120): There are two outputs for each feature vector
(coded in binary). There are 120 such vectors for training and will be the
targets for the input vectors.

o test_inputs (4×30): Once the network has been trained, it has to be tested
on data that it has not seen before. 30 vectors will be used for testing the
network.

o test_outputs (2×30): These are the expected classes for the test inputs. The
simulated outputs of the network will be compared to these actual classes
in order to determine the performance of the trained network.

• Typing the command NNTool brings up the GUI based neural network developer
called the “Network/Data Manager”.

• First you import some data. Click on the ‘Import’ button. A new window opens
up. Here you can specify the source of your data. Since the workspace is already
loaded, you can import data from there. Select the variable train_inputs and since
this variable pertains to inputs, in the destination section, select the ‘inputs’ option
and click on the import button. You will see that in the ‘inputs’ sub window, the
variable train_inputs has appeared. Similarly import test_inputs as inputs. Also

import train_outputs and test_outputs as targets. Also, import pn as an input,
which is actually the entire normalized input data and will be used to specify the
range of the data.

• Next you build the network.
o Click on the ‘New Network’ button. You can give a name to your

network. You can select the different types of networks you can build and
train. The Feed-forward backpropagation neural network is the default
choice and is the type used in this laboratory.

o Next you provide the range of values of the input data. This operation can
be done by selecting the source in the right hand sub window and selecting
pn. The network manager will automatically calculate the range of the
input values.

o Next, the training algorithm needs to be specified. During lecture, the
gradient descent training algorithm was explained. That training algorithm
is the ‘TRAINGD’. Select this one first.

o Next you select the learning function. This operation sets up the weight
update rule. Select LEARNGD, which was explained in class.

o Choose MSE as the performance function, which stands for mean squared
error.

o Next choose the number of layers that you want in your network. Type in
2 (to begin with) and press enter. This will tell the network manager that
you would like 2 layers for the network.

o Once you have chosen the number of layers, you have to specify the
properties of each layer. You can select an individual layer and specify the
number of neurons in that layer and the transfer function of neurons for
that layer. You will definitely need two neurons for the output layer
(remember the 2 bit binary coding) and 4 neurons in the first input layer
(You can vary this number later). Choose LOGSIG as the transfer function
as you would like the outputs to either move towards a zero or one.

o Finally, click on the create button and you will see your network name
appear in the ‘Networks’ sub window of the network manager.

o When you select the network you have just created, you will see a number
of buttons become active in ‘Networks only’ area of the manager.

o Review the different sections. First, look at the ‘view’ sections, where you
see a visual description of your ANN architecture. Note, the number of
layers and number of neurons in each layer and their respective transfer
functions.
� Next look at the ‘initialize’ section. You will see the ranges of the

input values that have been already set earlier. Here you can
initialize the weights by clicking on the ‘initialize weights’ button.
The weights will be initialized randomly between -1 and 1.

� You can look at the weight matrices and the biases in the
‘Weights’ section.

o After the weights have been initialized, the network is ready for training.
Select the ‘Train’ section, which has three subsections

� Training info: Selecting this section, you will have to specify the
training data. Under the “Training Data” select train_inputs as
inputs and train_outputs as the targets.

� Training Parameters: Here you should specify some performance
parameters pertaining to the type of training algorithm that you are
going to use. The most important ones for all the algorithms are the

• Epochs: This decides for how many cycles you would like
to train the network. For example, if the number of epochs
is 100 then the entire training data will be presented 100
times. Set this value to 500.

• Min_grad: This decides the acceptable error that you would
prefer. If this MSE (mean squared error) is reached the
network has converged and training will stop. Generally
this value is 1e-5.

• Show: This tells the software to show you the performance
error after a fixed number of epochs. For e.g. if the number
is 25, then the MSE will be calculated after every 25
epochs and shown to you.

� Optional Info.: Here you can specify any validation data set (used
for early stopping and is generally used when you have a large data
set) or a testing data set that you will add for simulating the
network. Leave this section as it is.

� After initializing all the parameters the network is read to be
trained. Click on the ‘Train Network’ button on the right bottom
corner of the window and you will see a new window show up and
a blue line go across from left to light. The network is now training
and the MSE is being shown every 25 epochs. If the MSE reaches
the set value the network has converged and training stops. If the
network does not converge and the number of epochs has reached
the set value, then the network has not converged. You will have to
retrain the network, by changing some of the parameters or the
training algorithm or the network architecture (that is the number
of layers and the number of neurons in each layer).

o Once you have trained the network, the network will be simulated with
a set of inputs that the network has not seen. Go to the ‘Simulate’ section
of the network manager. In the ‘Simulation Data’ section, select
test_inputs as your inputs and then click on ‘Simulate Network’ button on
the right bottom corner of the current window. You can also provide the
test_outputs so that the software will calculate the errors between the
simulated output of the network and the expected outputs. But, the feature
is not needed since our classes are binary based. Even though we have
trained the network on these binary classes, the simulated outputs will not
be exactly 0s and 1s. Some post-processing is needed to figure out
whether the output bits are 0s or 1s. To do this a routine (already built for
you) is run from the command window of MATLAB. But first you will
export the simulated outputs to the workspace. Your simulated outputs

will be stored in the variable network1_outputs. Going back to the
Network/Data Manager window, click on the ‘Export’ button. Select this
variable and click on ‘Export’. You also have a facility to store this
information on a disk. Once you have done this, go to the command
window and type ‘whos’ and you will see the variable network1_outputs
present there. You will now run the subroutine “post_proc.m”. In this
routine, you will replace ‘network1_outputs’ with the variable that will be
exported from your network/data manager to your workspace. Your final
outputs will be stored under the variable ‘sim_output’. Be sure to give a
different name to this variable when ever you try to post process new
simulated outputs.

o Compare the post-processed outputs and the test_outputs and see how
many test vectors were classified incorrectly. Please fill in the following
blanks. This process will summarize the entire operation and results that
you have just obtained.
� Type of architecture: ________________________
� Number of Layers (hidden + output):

� Details of number of neurons and transfer function used.

Layer Number Number of Neurons Transfer Function
1
2
3
4
5

� Training algorithm used **: __________________
� Number of epochs required for training: _______________
� Number of test_vectors classified correctly: _____________

o You should try architectures with varying number of hidden layers (go up

to a maximum of 3 layers), number of neurons in hidden layer. Observe
the effect on the result due to a variation in training times (number of
epochs) and training function. Prepare the summary chart (as shown
above) for each variation of network you train and simulate. Comment on
what architecture of network and training algorithm gave the best results.
For your report, provide details of TWO networks implemented that
have good results.

** Training algorithms: There are different training algorithms available for training a
feed-forward back-propagation neural network. The algorithm explained to you in class is
the TRAINGD algorithm. This is the simplest of all and sometimes ineffective in training
a network. Some of the more power full ones are TRAINCGP/CGF and TRAINOSS (for
big networks) and TRAINLM (for small networks).

